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We apply a recent theory by Coolen and Sherrington [Phys. Rev. E. 49, 1921 (1994)] which describes
the dynamics of the Hopfield model near saturation in terms of deterministic flow equations for order
parameters to the more general and technically more complicated case of neural networks with (i) arbi-
trary separable interactions, which (ii) need not be symmetric, and with (iii) more than one condensed
pattern. Following the key assumptions of the previous theory, the distribution of intrinsic noise com-
ponents of the alignment fields is calculated with the replica method. In the region where replica sym-
metry is stable, numerical simulations show that our equations capture the essential features of the flow,
even for nonsymmetric systems (i.e., without detailed balance). For symmetric systems, the fixed points
of the flow are shown to reproduce the thermodynamic equilibrium equations recently obtained by Cu-

gliandolo and Tsodyks [J. Phys. A 27, 741 (1994)].

PACS number(s): 05.50.+q, 05.70.—a, 87.10.+e

I. INTRODUCTION

Recently a method has been proposed for deriving a
closed set of equations governing the evolution of macro-
scopic order parameters in the Hopfield [1] neural net-
work model near saturation [2,3]. This method, based on
the systematic removal of microscopic memory effects,
has subsequently been applied to other disordered spins
systems [4,5], and is understood to be exact at least (i) for
short times (upon appropriate choice of initial condi-
tions), (ii) in equilibrium, and (iii) in the limit where the
disorder is removed (i.e., for attractor neural networks
away from saturation). For an overview of the method
and its present applications we refer to [6]. Although for
intermediate time scales the procedure is not exact (mani-
fested in an overall slowing down of the dynamics, which
the theory does not account for), it does capture the
essential characteristics of the flows and recovers the well
known equilibrium properties of the archetypal disor-
dered spin systems [7,8] as stable fixed points of the dy-
namic equations, including the full replica formalism.
Furthermore, in contrast to phenomenological strategies
for deriving flow equations, based on or inspired by time-
dependent Landau-Ginzburg-type equations as in [9,10]
or based on making an (incorrect) Gaussian ansatz for the
local field distribution as in [11] (with various degrees of
success in explaining dynamical phenomena), the present
theory is derived from microscopic principles and gen-
erates explicitly the non-Gaussian shape of the local field
distribution, which is ultimately responsible for the spin-
glass-type features of the dynamics.

Analyzing the Hopfield model near saturation in its
easiest form, within the so-called condensed ansatz and
upon assuming only one condensed pattern, is already
technically more involved than analyzing, for instance,
the Sherrington-Kirkpatrick spin-glass model [5]. This is
true within equilibrium statistical mechanics as well as
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from a dynamical point of view. Yet the Hopfield model
is in fact the simplest fully connected attractor neural
network with regard to the structure of the interactions
between the neurons. It is the aim of the present paper to
apply the theory in [2,3,6] to the more general and tech-
nically more complicated case of fully connected neural
networks near saturation with (i) arbitrary separable in-
teractions, which (ii) need not be symmetric, and with (iii)
more than one condensed pattern. Since absence of sym-
metry of the neural interactions implies absence of de-
tailed balance, our analysis includes systems for which
equilibrium statistical mechanics does not apply, so that
hitherto there has been no theory available with which
they could be studied. This latter aspect was in fact one
of the main motivations behind the development of the
theory in [2,3].

Following the key assumptions of the theory in [2,3,6],
self-averaging of the macroscopic flow with respect to the
disorder and equipartitioning of probability within the
macroscopic subshells of the ensemble, the distribution of
intrinsic noise components of the alignment fields is cal-
culated with the replica method. In our analysis we
make the replica-symmetric ansatz. In the region where
replica symmetry is stable, numerical simulations on
large systems (40000 spins), using the method proposed
by Kohring [12], show that for the models considered our
equations capture the essential features of the flow, even
for nonsymmetric choices for the neural interactions (i.e.,
without detailed balance). One specific implication of
this result is that we now have a general theory with
which to calculate, for instance, the storage capacity of a
class of attractor neural networks in ‘which the stored at-
tractors are limit cycles as opposed to fixed points. For
symmetric systems, the fixed points of our flow equations
are shown to reproduce the thermodynamic equilibrium
equations recently obtained for the present class of net-
works with separable interactions by Cugliandolo and
Tsodyks [13].
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II. DYNAMICS OF SEPARABLE ATTRACTOR
NEURAL NETWORKS NEAR SATURATION

We consider a system of N Ising spin neurons

€{—1,1}, evolving in time according to a stochastic
alignment to local fields &;. This process is described by a
master equation for the microscopic probability distribu-
tion p,(s):

dp,(s

= {w,(F;s)p,(F;s)—

i

w;(s)p,(s)} , (1)

where F; is the spin flip operator

equilibrium for the special case where the interaction ma-
trix {J,-]} is symmetric. The “inverse temperature”
B=T"" measures the stochasticity in the process. The
interactions {J;;} are chosen to be of a general separable
form, where the randomly drawn variables
&te{—1,+1} represent bits of patterns embedded in the
system by virtue of (2). For 4,,=8§,, we recover the
Hopfield model, the equilibrium properties of which were
studied in the seminal papers [7,14] (including the model
near saturation, i.e., p=aN with a>0). The dynamics,
for arbitrary {A4,,} but finite p, was analyzed in [15].
The equilibrium statistical mechanical analysis near satu-
ration for symmetric { 4,,] (detailed balance) has only

v
_ _ recently been performed in [13]. Here we concentrate on
Fi®lsysssiy oy Sp)=Rlsyy ooy =80 uy) the dynamicspnear saturation, i.e., p=aN, or arbitrary
and where the transition rates w;(s) given by {A4,,} (not necessarily symmetric).
We make the so-called condensed ansatz: only a finite
w;(s)=73{1—s;tanh[Bh;(s)]} , number ¢ of patterns §*=(&Y,...,&l) are assumed to
have a finite overlap with the system state s; the remain-
hi= 3 Jys; » (2)  ing p —c overlaps are assumed to be O(1/V'N ). The pat-
J#i tern components &% for p>c are regarded as (quenched)
1 2 N disorder. We now choose as our dynamic order parame-
=7V— EL Y AuE] ters the condensed overlaps m(s)=(m!(s),...,ms)),
B and a state variable r(s) to represent the uncondensed
lead to the familiar Boltzmann form p (s)<e PH® in overlaps:
|
mt(s)= 1 2 =1,...,c (3)
N l ’ b b
- 1 1 v
ar(s)= > Nzgjfsj -A—,}_‘,gjsj] . (4)
[g,v>clu>c,vSelpZe,v>c] j j

For symmetric systems 7(s) is proportional to the disorder-dependent contribution to the Hamiltonian (the disorder-
independent contribution being a function of m). As in [2,3,6] we hereby build in the correct equilibrium behavior. For
nonsymmetric systems, however, no such guide for choosing r is available and the only motivations are analogy with
the symmetric case and (a posteriori) success of the resulting theory. Since r(s) contains a symmetric sum, it only de-
pends on the symmetric part A’ of the matrix A.

The corresponding macroscopic probability distribution 7,(m,r ) is

P,(m,r)= 3 p,(s)8(m—m(s))8(r—r(s)) . (5)

Insertion of the microscopic laws (1) leads to

——? (m, r)—— Zp, s)—— 2 {1—s;tanh[Bh;(s)]}s;&;8(m—m(s))8(r —r(s))
2
+2—aa7 S puls) iz 1—sitanh[Bh(s)]}5,22(s)6(m —m(s)8(r —r(s)+0 | & ©)
where £, =(£}, ..., £¢) and
hi(s)= 3 &¢A,,m"(s)+zi(s)+z/(s),
w,v=c
PREE > £ A% 25;]} : )
[,u,v>c\y>c,v5cl,u$c,v>c] ]#=1

Using (1/p)3;s,z'=r(s)—(1/p)Tr A+0O(1/V'N ), we can write (6) as
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>m,r;t

r—-p}-TrA—é(% gzistanh[)’{ > &tA,mYtzi+zf

w,v<c

d v s a
E?,(m,r)=vm' > &tA,,mV+z+z

wv<c

P,(m,r) {m——<% > &;tanhf

+0

d
+2 3 [?D,(m,r)

c?
N y (8)

~

where we have introduced the subshell average
> p:(s)8(m—m(s))d(r —r(s))P(s)

(@) =

mrit = T (5)8(m—m(s)(r —r(s)) ©

In the limit N— o Eq. (8) acquires the Liouville form, the solutions of which describe deterministic evolution,
P,(m,r)=8(m—m*(z))8(r —r*(t)), where (m *(¢),r *(¢)) obeys the flow equations

d — s a a s

Em—fdz dz (i)g[zs,z ] tanhB(§- A m+z +z")>§—m , (10)
l_d__ :i B a s a S, . s a _ i

T fdz dz (ﬂg[z ,z%]z°*tanhB(§- A .m+2z°+z%)), r+pTrA , (11)

with { f(£) );ZZ‘CE,;E (-1 1]qf(g‘), and with the distributions D,[z°,z] of the intrinsic noise contributions to the align-
ment fields within sublattices,

i)g[zs,z“]=20<-]—1v~ 28(25—2[3(s))S(z“—zf(s))8§§i>m i fszdz“(;D;[zS,z“])fl ) (12)

So far the theory is exact for N — o, within the condensed ansatz. However, the noise distributions depend on ¢
through the microscopic probability distribution p,(s), requiring us to solve the master equation (1), which is exactly
what we want to avoid. We now close the macroscopic equations [(10) and (11)], following [2,3,6], by assuming the fol-
lowing:

(i) The flow equations [(10) and (11)], and hence the noise distributions, are self-averaging with respect to the disorder,
i.e., the variables &, allowing us to average over them.

(ii) We can assume equipartitioning of probability within the (m,r) subshells of the ensemble as far as the calculation
of the D¢[z%,z] is concerned.

N.B. we do not assume that the microscopic probability distribution p,(s) obeys such equipartitioning, rather that prob-
ability fluctuations within the subshells are negligible once the average over patterns has been carried out. These two
assumptions, the correctness of which can be verified only by comparison of the predictions of the resulting theory with
numerical simulations, close the flow equations (11) and reduce our problem to that of calculating

> 8(m—m(s))8(r —r(s))d(z*—z/(s))8(z%—z/(s))
$§[zS,z“]:<

s > for £,=¢ . (13)
> 8(m—m(s))d(r—r(s)) n

Here we have redefined the pattern components to be averaged over to differentiate them from the condensed patterns:
7 =84 for u>c.

III. INTRINSIC NOISE DISTRIBUTIONS

A. Replica approach

We calculate the noise distributions using the replica identity
(D(s)W(s)), <

= lim

2 o(s") [T W a) (14)
wisy,  am\®sD) T S e

a=1

Upon insertion of integral representations for the various § distributions we can write the intrinsic noise distributions as
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2 fdx dye:xz‘+1yz f

X <<exp[ —ixz%(s!)—iyz%(s!) —iN3,(M*m(s*)+R %r(s%))] (15)
a 7' {s%}

iNY,(M%m+R %)
Delz*,2 ]——hm T “

[1 dM°dR® |e
a

with the (Greek) replica indices a=1,...,n. We now define (p —c)n quantities z£4=(1/V'N VD keiMisg~0(1),
(u>c), so that the averages in the above expression becomes

(feo 1|z

v

z
z(xA;V+yA;V)71N—+ S (x4, +y4%,)m”

i
+ 3 fMxdl,+ydl) ]

u>c v>c v=c pc,v>c
a tsf 15
Xexp |=iN 3, ‘Ma-m(s"‘)-kgﬁ S | 7‘7/ Llas, |zn+ 7‘7/_]\7
mv>c
—~ nﬁ‘ i
+2VN 3 |t = (16)
u>c,v=c
Assuming that 3, .n% 4;,,m7 ~O(1), so that this term can be neglected, we can average over { f‘ and z}#} upon in-
troduction of the density of states
1 e—(l/z)z~(q“®1)z
:D(z,s)=<8 z——— ®s > = (for N> o), (17)
VN ,é,."" “IIn V2" 9det(qe 1)

where g,4(s)=(1/N) S ii55sE, and 1,,=3,,. Our average (16) therefore becomes

fdzfl)(z,s)exp —é—ZR"za- Az jexp|—iY I é‘“(fow-i-ysz)\/% +;VNR“m"AfW z}
a a p<c,v>c
V
XJlcos| |3 (x4}, +yA,,) + 3 (x4, +tyd,,)m” +£2R”‘ > 4, wsim . (18)
pu>c v>c N v=c a g v>c N vZc

In order to evaluate the integral we expand cosx =1—x2/24+0(x*), which in order for the O(x*) terms to vanish
places a restriction on the matrix A. Splitting the symmetric and antisymmetric parts of A into condensed-condensed,

condensed-uncondensed, uncondensed-condensed, and uncondensed-uncondensed submatrices
s s a a

A cc A cu A cc A cu
s s a a

A uc A uu A uc A uu

A= +

showed the restrictions on A to be 3,..A4;/z"~0(1) and 3 ,<.4;7,m"~0(1 /V'N). Assummg the matrix
q !®1+(2i/a)R® A3, to be positive definite, the result of the Gaussian 1ntegra1 has the form e® where

-1

exp —%r- q“1®1+%R® ALl T
P=In 172 (19)
det(q® 1)det q"1®1+%R® AS, ] ]
1 - 2i s . 2
. fdzexp —Ez- q ®]l+;R® Ay, (z—iY-z |, (x,y,m,R,z)
X 2 In 1——2‘ ,
s fdzexp —%z- q"@]l—i—%R@ A, |lz—iY z
T, = gcé“‘(xA yAy )‘/ + = \/NR“m“AfW , (20)
H=

L,(xp,mR,z)= |3 (xA4;,+yA},

v>c vZc

(x4, +yd4,,)m” ]—!— ER"‘ wSEm

2 Ayv‘/N

v>c v=c

(21)
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We split ® into extensive and the intensive parts; P=NQ—R:

Q___z S 3 Rm*A,(ATHZE 4 mPRB———det( g® 1)det(A) , (22)
a? a,Bup=cvy>c

R=Ls 5 3 [Hxds, A2 AT)E A meR

a B wp<cv,y>c

1 S a s a T
+=3 3 3 R'mtA; (ATHR[E(xA5, +yAs,)]

a wmpcv,m>c

Q

a s a 1
N 2 3 [GMxdAn, +yAL)NAT Dnl&P(x A, +yA5,)]

yp<cvn>c

fdzexp —%z q—1®][+%:—R® A, lz—iYz Fﬁ(x,y,m,R,z)
32 : (23)
>c 1 - 2i .
# fdzexp —5Zld 1®]+;R® A, [z—iYz
2
AB=q.48, +;‘Rasa,3,4;w. (24)

Notice that since A is symmetric in the indices u,v, the antisymmetric parts in the first two lines of the expression for 72
cancel, and symmetric and antisymmetric parts in the third line decouple.
In order to facilitate the spin average, we now introduce the following representation of unity:

n2
1= [ dq,58(q0p—ap(s)]= [ 494540 15exD{iNG o5l 9 0p— G ap($)]} (25)

Hence the noise distributions (15) become

Z)g[zs,z“]~3inrﬁ)fdeMdqdaexp[N\I/(R,M,q,ﬁ)]fdx dy exp(ixzs+iyz“)<exp —Rxy)—i 3 3 M st >1 | )
a p<c s
(26)
where
v=j 2 (mM*+rR%)+i zqaﬁaaB+Q(R q)+F > 1n<<exp [2 > EkMgsi+ E@ags,?s;f] (27)
ki a,B

a p=c &l (5%

The integrals over R,M, q,q are to be performed by the saddle point method. The saddle point relations in turn allow
us to evaluate the (intensive) integrals over x and y determining the noise distribution.

B. Replica-symmetric saddle points
We assume that the relevant saddle points are replica symmetric, i.e., that

an 5 B+q( aﬁ) Varﬁ s

9.5=9(1—8,5) ya,pB,
R*=RVa,

and
M*=M Va

(N.B. the diagonal elements §,, vanish automatically). At this stage it is convenient to make the change of variables
p=—(2i/a)R, §=(i/2)A% and M=iu. The matrix 8,5+¢q(1—38,4) has one eigenvalue 1+¢(n —1) and n — 1 eigen-
values ¢ —g; hence we obtain

lndet(q@]l)+1ndet(A)=Trln[8M—pAfw(1——q+nq)]+(n—l)Trln[S v—pA,(1—q)] (28)

and
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AT1B=5 (1—q)[8,,—pAs,(1—q)] ' +q[8,—pA,us(1—q)] '[8,,—pA},(1—qg+ng)]"". (29)
M B 7 0 Iz Iz

The last term in ¥ (27) becomes

v, v — 2 dw
<1nwa exp |n Incosh Ecé',u +Aw l>g , Dw=exp Sw Ve (30)

The saddle point equations ¥ /dM;, =0, d¥ /33,53 =0, d¥ /0R “=0, 0¥ /9q,,3 =0 give the following:

J Dw g'tanh | 3, £u¥+Aw |cosh” | 3 £ +Aw
m“:< < < > ’ )
[ Dwcosh” | 3 £p¥+Aw ¢
wa tanh® | ¥ £'u+Aw [cosh” | 3 7"+ Aw
- < > | )
wa cosh” | ¥ &'u¥+Aw £
v=e

r=iTr{Afm[]l—p(l-— N1—g +ng) A, 1—p(1—q+ng) AL, 1" [1—p(1—q) A%, 17

;lzs%pzm A3, A" g,p)ALm , (33)
2
x2=—f’—“‘§7 Tr{ A}, Al [1—p(1—g+ng) A, 1 '[1—p(1—¢ )Aiu]“}+n—(;l_—1) aim ALATgp Ajm,  (34)

and the extensive exponent ¥, evaluated at the saddle point, is given by

%\I/(u,p,q,k) —m-u—lap— %(n—l))»zq—2INTr{ln[]l—pAfm(l-—q+nq)]]

— 2 m[1—p AS (l—q)}}-i-p—m A’S A S A'm
N 2

+%<lnwa exp |nlncosh | ¥ &u*+Aw

nc

> . (35)
I3

A~ ! has the general form Bb,5+C. Such matrices have the properties

. 1
li [B& 4+C —_— =—B.
nli%n azB atC1=B, ;Pg})n(n —1) E',[Baaﬁ_'_cl B (36)

Therefore in the limit » —O0 our saddle point equations become

m"=< [ Dw g#tanh | 3 £u+Aw > , (37)
vZc¢ £
=<watanh2 S £u+Aw > , (38)
vZe £

r=- Te{ AL [1=p(1=)? AL, J1—p(1=q) AL ) 1 =p(1=g) AL T ™)

1—q 0

+—a—5;p2m-Aiu[]l—pAfm(1-q)]_lAfmm, (39)
2
ﬂza—‘;f’—Tr{ A, A, [1—p(1—g)AS, 1" [1—p(1—g)AS, ] "} +p’m- AS, [1—p(1—g)AS, ] 2A2.m . (40)

These equations are to be solved for A positive definite, which is necessary for the Gaussian integral to be well
defined, possibly placing restrictions on the eigenvalues of A.
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C. Shape of the intrinsic noise distribution

The shape of the noise distribution is now determined by the intensive terms in the integrand, with the values of
,q,p,A evaluated in the saddle point. We leave the details of the calculation of 2 to Appendix A; the result is

=@g[zs,z"]~fdx dyexp(ixzs-i-iyz”)(exp >1 | (41)
sa

—Rxp)+ 3 &u" 3 s’

v=c

~ d_Xd_y xS jur @ 142
f Y explixz®+iyz®)exp(—1y*9)

. ol A
X<CXP 3 Qw3 s —ixB—ixp ars,-‘+? S s¥|=x*6—ipx 3 F s wa exp wFZSr“l) , (42)
vZce a a>1 a a (s}
where

9=—ap—2pm- A% A% A, '[R+(n —1)Am—p’m- A5, PA, m—m- Al Aj m, (43)
B=p&[Re.+(n—DA, Im, (44)
§=2m-{ Al +p[Fie, +(n = DA [ Al +pl Ry +(n = DA, NJm+ (45)
F=m-{ A}, +p[R., +(n — DA, B { Al +p[ Ry +(n —1DA, jm , (46)
2=22=X"+p m-{ AL, +p[Ro, +(n — DA, D Al +p[R e +(n —1DA, J}m @7
A2 1 - 1
= 3 ALATITPAL = TrA
P2 N,u,v,}»>c # K N

=%Tr{ A, AL [1—p(1—g+ng) A5, 17 [1—p(1—q) AL, 171}, (48)
— 1 —1ya= s — 1 7
aFr =7 2}: Su(AT )5, BAM——A?TrY{ (49)

B, V,A>

=%Tr{Afm A [1—p(1—g)(1—q +ng) A3, N[1—p(1—g+ng) A}, 1 [1—p(1—q) A}, 17"},

_1 @ (A—-11 ga — 1 5
ap=— 3 AL (ATHLA4Y=—TrP. (50)

N/,t,v,)»>c * K N

Carrying out the spin average gives

s a1 1: dx dy . . a .
Delz’,z ]—'}LmOf ;E;exp(zxz’—kzyz )exp(—%yzg)exp(—xzé——txﬁ)wa

72
Xcosh" 1 |3 §",u"—ixk—~—ipx$7+w1" cosh | ¥ &'u"—ixparF—ipx F+wl | . (51)
v=<e p v=Zc
We can carry out the integral over y immediately (assuming & to be positive); however, the cosh” ~1(-++) will cause a
divergence for n —0. However, if we define
A= ~_X_2—a (l_q) s _ _ s 171 As
=apF P » Tr{ A, [1—p(1—g)Aj, ] A}, }, (52)
the cosh terms in (52) become
XZ X2
cos(Ax)cosh | ¥ &u’—ix———ipxF+wT | —isin(Ax)sinh | 3 g“'y”—ix—p——ipxﬂ-kwl“ , (53)
v<c p ve
so that the possible divergence eliminated by the contour shift §'=w —(ix /T WX2/p+pF), giving
@;[z‘,z”]=(27r9)_1/2exp( -1 “g_lza)f %’;—exp ix(z‘—ﬁ)—EA;x2 fD?’exp —ixfy“%
X% (edx e xB)—(gix—e ™ A)anh | 3 Lu*+H'T | |, (54)
v=Zc
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where we have used the relations X*/p+pF=T2/p and 6 —(1/2)(X*/p+pF)=A/2p. The remaining integral over x is

easily performed using 1+T?/pA=26p/A and —1/26+p/A=T?/2p6A and (again) a rescaling
y=V26p/A[P’'—(I'/26p)(z°+=A—B)], giving the final result
172
—(1/2)2997 124 s 2 2
e (z°=B+A) A s r
) —-2 2727 | 11— [ Dy tanh "Wyl |=2— | +(z*+A—B)
D221 = — s |exp v J Dy tan I CwHT |5 265
(z'=B—A) a | r
25— B—
—_— = =7 v,V I" - -+ S_A_‘B
+exp i l1+nytanh V%gu +y 26p (z )ng ]

Figures 1 and 2 show the noise distributions as a function
of z* for four values of z% and

as predicted by our theory (solid line) and as measured
using spin simulations (histograms). The simulations
were carried out for a system of 40000 spins (neurons),
using the block diagonal matrix (76) (see Sec. IV). Figure
1 corresponds to the values of parameters a =1 (giving
rise to cyclical behavior), a=0.0256, m;=—0.2173,
m,=—0.5511, and r=3.700631, while Fig. 2 corre-
sponds to the parameter values a =2 (converging towards
the fixed point m=0,r > 1), a=0.0512, m;=—0.007 35,
m,=0.004 35, and r =4.173 877.

-10 <z < -08 -04 < 2" < —0.2

O-OIODTI l TTT ] TTT ] L 0'30 _[ I‘T_[ TTT 1 TTT ' TT I_
0.008 — — - -
— C J 020} —
5.0.006 [— — - ]
) F ] - ]
0.004 [— - - B
=2 r 4 0.0 }— —]
0.002 |~ - = -
0.0 L1 Ll L . O.OHLlll\klll L]
-20 -10 09 10 20 -20 -10 09 10 20
Zs z
-02 < z" < 00 06 <z <08

0~4OETV[F|| IT["IIIﬁO'OSOIII]IVT]IIIINT[_
= 3

1 0.040 —

0.30 { 3

. 4 0.030 -
"~ 0.20 - 3
A - 0.020 -
010 " o010 —
0.0 Lt 1] O_OEJ_Ll I |1|:
-20 -10 09 10 20 -20 -10 09 1.0 =20

z

FIG. 1. Plots showing sections through the noise distribution
at values of z° near z°=-—0.9, z?°=—0.3, z°=0.01, and
z9=0.7, for a model with block diagonal A (76) (see Sec. IV)
with @ =1 (giving rise to cyclical behavior), a=0.0256,
m=—0.2173, m,=—0.5511, and »=3.700631. The solid
lines are theoretical predictions, while the histograms are taken
from simulations by counting the number of sites with z%, z%in a
range 0.1 from the center.

(55)

From Figs. 1 and 2 we can see that in the first case
when cyclical behavior is observed our model appears to
underestimate the distribution at extreme values of z¢
while overestimating for z¢ around zero. This could be
partially caused by the finite size of the bins of the histo-
gram in the z? direction, and by other finite size effects.
[The number of spins needed to obtain good statistics
given that one must specify (i) a value of ¢, (ii) an interval
of z%, and (iii) an interval of z¢, is unfeasibly large.]

Both sets of distributions “look” approximately Gauss-
ian. In fact the results of numerous simulations have re-
vealed that it is extremely difficult to force a network
with nonsymmetric interactions to iterate towards a state
where the noise distribution is strongly non-Gaussian. In
contrast, the symmetric case [3] nonretrieval states
(m=0) have double peaked noise distributions. Al-
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FIG. 2. Plots showing sections through the noise distribution
at values of z¢ near z°=—0.9, z°=—0.3, z°=—0.1, and
z?=0.7, for a model with block diagonal A (76) with a =2 (see
Sec. IV) (converging towards the fixed point m=0, r>1),
a=0.0512, m;=—0.007 35, m,=0.00435, and r=4.173 877.
The solid lines are theoretical predictions, while the histograms
are taken from simulations by counting the number of sites with
z%, z%in a range £0.1 from the center.
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though the theory does not describe the shape of the dis-
tributions exactly in these cases [16], it shows a good
qualitative fit to the clearly non-Gaussian shape, in con-
trast to the time dependent Ginzburg-Landau approaches
[10,11]. The lack of non-Gaussian shaped noise distribu-
tions networks with nonsymmetric interactions implies
that symmetry plays an important role in building up the
correlations between the system state and the uncon-
densed patterns at the microscopic level, or equivalently,
that the macroscopic dynamics does not lead the system
to a region of (m,r) space where the noise distribution is
strongly non-Gaussian (g —1).

D. Special cases and critical surfaces

The noise distribution (55) in general can only be calcu-
lated numerically. For specific choices of A, however, it
simplifies considerably. In the absence of condensed-
uncondensed couplings, for instance, $= —ap, B=0,
E=aF/2, F=0, and ['>’=2%2. In the absence of antisym-
metric components to A we find that §=0, and the
Gaussian function of z¢ becomes 8(z¢%). For A=1 (the
Hopfield model) the noise distribution reduces to the re-
sult given in [5].

There are also several regions [in the space of (m,r)]
where the noise distribution takes on a special form, or
where significant transitions occur.

(z%)
exp - . R
a N
Dlz%,2°]= P ) |exp |—22H@p?)? |

2589

1. Gaussian noise

In previous papers the noise distribution has often been
assumed to have a Gaussian shape [11]. Here we can see
that this requires A =0, which implies that

98,,=8,,—p(1—q)4;, , (56)

requiring 4,,= 48, and p=1/4 (g —1). Tracing this
back through the saddle point equations leads to the re-
quirement r =1, which explains why the Gaussian noise
approximation is only reasonable in the region of (m,7)
space where retrieval occurs.

2. q=0,m=0

From the saddle point equations we can see that m =0
implies £ =0. Expanding the equation for g around g =0
therefore gives

2
q=A\*[ Dw wzz%&Tr[ AS, AS, (1—pAS)72]. (57)

The only solution is ¢=0 if 1>(ap?/
pI)Tr[ AS, AS, (1—pAS,) *]. The saddle point equa-
tion for r at ¢ =0: r=r, =1/pTr[ A, (1—pAS,)"!]
subsequently defines the value of r below which ¢ =m=0
is the only solution. In this region of phase space (m=0,
r <r.) the noise distribution is a sum of two Gaussians:

2aF

_(z'—apr) J } , (58)

3. Freezing line

The freezing line occurs when the number of microscopic states contributing to the macroscopic state goes from an
extensive large number to an extensively small number (equivalent to a transition to a macroscopic state with negative

entropy):

.1 —
A}l_r)nw Nln? 8(m —m(s))d(r—r(s))=0.

(59)

This is the first sign that something has gone wrong with the replica method. We can relate the freezing line to the sad-
dle point problem encountered in the calculation of the intrinsic noise distribution. In order to average over the pat-
terns £ we use InZ =1lim, _ (1/n)(Z"—1) to cast (59) into the familiar form

lim lim L

N—>w n—>0Rn a=1 n—0

<< I1 8(m —m(s"))S(r—r(s"‘))))——l ‘= lim L w=—1In2 . (60)

Using (27) this leads in the replica-symmetric (RS) approximation to

11 _
—In2= —m-y~3ap+3x2q+12—’%m A, [1—pAs,(1—¢)]7 Y
— L pr{n[1-p A%, (1—) ]} +pX1—g)m- AS[1—p(1—¢) A, ] ' AL m

2N
S Eut+ Ay > . 61)
I3

p<c

+< [ Dy Incosh
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This freezing line defined by (61) occurs close to, but not exactly on, the ¢ =1 line. The above equation is to be solved
numerically along with the saddle point equations.

4. g=1
In the g =1 region of (m,r) space we can use the asymptotic form of the saddle point equations to derive a simpler

expression for the noise distribution. We expand the saddle point equations in é=1—gq in order to determine where the
g =1 line occurs. We first note that A <p. From the saddle point equation relating  and p we note that p < e~ ! and

hence A < e~ !. Therefore tanh(Ap +&-u)=sgn(AP +&-u), which we use to simplify our saddle point equations for m
and g:
m“=<§“erf i% > : 62)
—e=q—1= <f P tanh* (AP +£&-p) ——l)
3
e —(172)y? 2 dy B
—-t h(Apy + > ——< e ~(1/29%anh(A§ + >
<[ any§u§ka2y HEm),
2 IFTVZIN 2
=—= Dy
k< £u/7» f d y> 0(e)
A (e—(1/2)(§y/7»)2) +0(e?) . (63)

These equations are to be used along with the relationship between A and p, to define the ¢ =1 line in the (m,7) plane.
However, for more than one condensed pattern the average over £ makes the expression for m noninvertible, and the
relation between A and p is complicated for general A.

Since X and p diverge faster than the term containing the integration variable y as ¢ — 1, the noise distribution be-
comes

exp(—12z9971z7) (25— B+A)? r2
D¢l z%,2z%]= —_— ex w—(z*+A— fB)
elz2°] V8296 P 46 2 €6p
(z°—B—A)* 1 » _
+exp v (S) c v%; +(z°—A— B)Zeé’p (64)

where e=1—g and 9,6,8B,p, A are evaluated at ¢ =1. Note, however, that the above analysis extends the noise distri-
bution into the region where replica symmetry is unstable.

5. de Almeida—Thouless (AT) surface

The AT surface [17] signals the instability of the replica-symmetric solution via bifurcations of the form
i .
9ap—9 189,08 Qup— Ekzﬂ-z&)aﬁ , (65)

with 3 ,..68¢,5=0, 3,559 ,5 =0 (the so-called replicon model). Using (27) we can expand about the replica symmetric
solution in first nonvanishing orders giving
3’0 *P
\P_WRS_ 2 2 8qap0q 57— _2 D 84,58G s X 8q4550,p (66)
2 Zhy#s BT 3 apOdys 2 a7py 7 ! 09,39G,5 arp o

where

Q= %lnf dzD(z,q)exp(1pz A’z+pV'N m- A’z)®

= ln<<exp >§> . (67)
{s%)

The stability of the RS solution can be written as an eigenvalues problem,
20 —1
—1 3%

§-,u2s“+% éﬁ[k2+28@aﬁ)s“sb

San
=A
Saaﬁ

San
Saaﬁ
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The critical stability will occur when the eigenvalue A is zero, so the AT surface defines a solution of 32Q3’®=1. We
leave the details of the calculation to Appendix B, where it is shown that the AT surface is given by

2 2 _ _
1= | (TR P+ 2p T AT + T AT A) ’ <fm cosh~4<§~y+w)> . (69)
3

(TrR =NA.) Replica symmetry is stable as long as the right hand side is greater than 1.

IV. REPLICA-SYMMETRIC ORDER PARAMETER FLOW

Having derived an expression for the noise distribution we now obtain differential equations for the flow of the order
parameters (m,r) by inserting (55) into (11). Upon making specific choices for the matrix A we can test the validity of
our theory by comparing results from solving the macroscopic equations with results of performing microscopic spin
simulations. As pointed out in [6,16] the present theory appears not to be exact due to the assumption of equipartition-
ing within the energy subshells. However, as with the previous study [3], we expect the equations to capture the essen-
tial features of the flow.

We can write the dynamic equations in a more compact form by changing variables to

S— B+
zi=g1/2;0 xrz_zﬁ (70)
(26-7)1/2
The flow equations then become
dm__ _ ’ ' P o _
7—<sz“fDx ny gMg(z",x ,y )>§ m, (71)
iﬂ:(fpz“fpx'ny’R (Ea,x’,y')> —|r—1TrA|, 72
2 dt ¢ ¢ D
where
172
Mz xy = 1 tann | gty | T I hB(&- Am+9'%2°+U ")
(Z%x"y")= > tanh |&-pu+y 26 2672 tanhB(&- Am Z
172
+ 1 b tanh | oty | EA =L | lanhB(&- Am+ 9122+ U ) (73)
2 26p (26)%p ’
172
R,z x"y ) =1 1~ tanh gpty | T tx—L L tanh(g- Am+ 920+ U )
(Z%x"y =3 tanh (§-pu+y 26p x (26’)‘/2;; anhfB({- Am Z
172
+ 1 ranh ety [ BA | 1o — Tyt tanhge- Am+ 9172244+ U ) (74)
2 26p (26)% ’
Ut=(26)"*"+BFA . (75)
[
A. Comparison with numerical simulations amount of computer time necessary). By varying a we

are still in a position to investigate the agreement be-
tween theory and simulations for both symmetric and
asymmetric A.

We make the following specific choice for A,

1 a
—a 1 0 We notice that for a =0 we obtain the Hopfield model,
1, ¢ and as @ — o the interactions become predominantly an-
A= .. , (76) tisymmetric. Because the saddle point equations contain
’ . only the symmetric part of the matrix, which is in this
0 —a 1 case the unit matrix, they simplify considerably,
and assume that the first two patterns are condensed. m! 1
T1.1e choice (76), without condensed-uncqndensed cou- 2 |=1 f Dy 1 tanh(p'+p2+A9)
pling terms, is made purely for computational conveni- m

ence. Without such terms the saddle points have unique 1
solutions; if such terms were included they could become + 1

, an
much more difficult to solve (increasing the already large

tanh(p'—p2+Ay)
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g =1 [ Dp[tanh®(p!+p2+2AP)+tanh(u! —p2+29)]

(78)
Vo g o 1-p1—q)
== , F=r= s
ap* [1—p(1—q)T [1—p(1—¢)T

(79)
9=aa’r .

The absence of coupling between condensed and un-
condensed patterns leads to B=0, é=[c21p( 1—q)]1/
[1—p(1—q)], 26=ar, and Am =(’fa:;‘{’lm2). From
these expressions the dynamics of the order parameters
(m,r) according to (72) can be calculated numerically.

In Figs. 3—-5 we show the results of Monte Carlo spin
simulations, along with the results of the theory in the
m'—m? and m'—r planes, comprising flow lines of the
simulations along with arrows indicating the theoretically
predicted magnitude and direction of the derivatives
dm'/dm? and dm'/dr. Each simulation is carried out
for system of 40 000 spins, with each of the following sets
of parameters: a =0,1,2; T =0, 1; p =1024,2048.

As we can see the arrows give a good qualitative

p=1024 p=2048
T T
3 — 3 —
r
2 2
T=0 1 l 1 |
1 1
m, E i t : \ &
0 L 0 L
0 1 [¢] 1
T
3 — 3 —
r 2 — 2 —
T=1 1 1 - 1 ‘ —
1 T 1 T
0 ”//Tj:;~‘ 0 L e |
¢} 1 [¢] 1
m, m,

FIG. 3. Plots showing the evolution of m;, m,, and r for a
system of 40000 spins and embedding matrix (76) with a =0.
The solid lines are the results of spin simulations, and the ar-
rows show the instantaneous values of dm,/dm, and dr/dm,
calculated at intervals of 1 iteration per spin. The lengths of
the arrows are proportional to the magnitude of the derivatives.
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description of the direction of the actual flow. Closer
analysis of the time derivatives in Figs. 6 and 7, however,
shows deviations from the simulations that are noticeable
for states giving rise to nonretrieval (i.e., flowing towards
the fixed point m=0, r>1), manifested in an overall
slowing effect. The derivatives dm,/dm, and dr/dm,
however, show a better fit. It is not clear whether this is
due to the effects for replica symmetry breaking or a
manifestation of a more fundamental error within the for-
mulation of the model. Such measurements were made
for the Hopfield model [16], where small but significant
discrepancies were found between the shape of the noise
distribution found from the model and from simulations.
Such effects were also observed in a toy model where an
exact solution [4] was possible.

B. Fixed points of the flow

In the absence of asymmetric interactions we expect
the fixed points of the flow (72) to correspond to the equi-
librium saddle point equations derived in [13]. In order
to show that this is indeed the case we carry out the fol-
lowing coordinate changes on the flow equations:

p=1024

p=2048

|
—
o
—

|
—_
o
—_

FIG. 4. Plots showing the evolution of m,, m,, and r for a
system of 40000 spins and embedding matrix (76) with g=1.
The solid lines are the results of spin simulations, and the ar-
rows show the instantaneous values of dm,/dm, and dr /dm,
calculated at intervals of } iteration per spin. The lengths of
the arrows are proportional to the magnitude of the derivatives.
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172 172
x=x' 2 A iﬂ:(fDx ny §M§(m,r,x,y)> —m,
2 ’ dt ¢
26p 26p 0 (81)
| 1/2_ | a 172 %%:(J‘Dfoy Rg(m,r,xy)> — {r—%TrA »

Y= 560 26p ¢

The flow equations then take the form where
|
M (m,r,x,y)=3[1—tanh(§-p+Tx)]tanh(B5- Am+BU ™)+ [1+tanh(§-p+I'x ) Jtanh(BE- Am+B8U™"), (82)

R (m,r,x,y)=4[1—tanh(§-p+Tx)]U " tanh(BG- Am+BU ")+ ;[1+tanh({-p+Tx )]U *tanh(BE- Am+BU ™) ,

(83)
r A 12
Ut==—x—|=| y—BFA. (84)
P P
We now use the two identities
tanhu = 1(1—tanhu )ny tanh(u +yz —z%)+1(1+tanhu )ny tanh(u +yz +z?), (85)

u tanhu +2z%=1(1—tanhu )ny(u +yz —z?)tanh(u +yz —z2)+1(1+tanhu )ny(u +yz +z2®)tanh(u +yz+z2),

(86)
wi?h u=¢-pu+Tx, z2=PA, to show upon choosing p=p and £-p=B¢- Am— BB that the flow (81) is indeed at a fixed
point

dd—?=(fDx Stanh(§-pu+Tx ))g—m=0 , 87
%%=<fDx %’i+%~g-Am tanh(§-y+l“x)>;+%— r—iTrA
=£Em~(y,—BAm)+£—; [1=(/ Dx tanbgu-+Tx >>g]+%— r—-TrA
=£Em.(“_3M)+Z—;(1—q)+%— r—%TrA =0, (88)

where the equalities are consequences of the saddle point
equations (40). By comparing the dynamic saddle point
equations with the equilibrium saddle point equations we
can see that the equilibrium equations derived in [13] cor-
respond to

p=B{A'— ALTAL —B1—¢)1]'AL} T'm
=BA; m—Bp(1—g)AL[1—p(1—q) A, ] ' Ajm,
(89)
pP=B. (90)

Careful analysis of the equilibrium saddle point equations
reveal that these indeed imply §&-p=p§- Am—pB3B.
Hence the present dynamic formalism correctly recovers
the equilibrium phase diagram of [13] as fixed points of
the flow.

V. CONCLUSIONS

In this paper we have generalized a recent theory [2,3]
to describe the dynamics of the Hopfield model [1] near
saturation to systems (i) with arbitrary separable interac-
tions, (ii) which need not be symmetric, and (iii) with
more than one condensed pattern. The theory, valid
within the condensed ansatz, describes the evolution of
macroscopic order parameters: the condensed overlaps
m* u=1,...,c (where c is the number of condensed
overlaps) and the disordered contribution to the energy r.
The theory is based on the systematic removal of micro-
scopic memory effects and requires the two assumptions
of self-averaging with respect to the microscopic realiza-
tions of the stored patterns and equipartitioning of proba-
bility within the macroscopic subshells of the ensemble.
While these assumptions are correct in detailed balance
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FIG. 5. Plots showing the evolution of m,, m,, and r for a
system of 40000 spins and embedding matrix (76) with a =2.
The solid lines are the results of spin simulations, and the ar-
rows show the instantaneous values of dm,/dm, and dr/dm,
calculated at intervals of % iteration per spin. The lengths of
the arrows are proportional to the magnitude of the derivatives.

equilibrium, there is no reason a priori to believe they will
carry over to nonequilibrium, nonsymmetric cases.
Indeed the results of previous studies [3,6,16] suggest that
the assumption of equipartitioning within the (m,r) sub-

fdz e —(1/2)z-Az-iT-zz/é 3

b=
8a fdz e ~(1/Dz-Az—iYz Y
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shells is not always valid, leading to an overall slowing
down effect in the flows that leads to nonretrieval states
(m=0). The closure of the dynamic laws requires the
calculation of an intrinsic noise distribution, which can
be calculated using the replica method. We have com-
puted the region over which the replica-symmetric solu-
tion is stable. We have shown that the theory captures
the essential characteristics of the flow for both sym-
metric and asymmetric interactions, while close observa-
tion of the flows and the noise distribution itself [16]
show that the agreement between experiment and theory
is not perfect.

Furthermore, in those regions where detailed balance
holds, the correct equilibrium equations derived in [13]
are recovered as stable fixed points of the dynamics. The
theory has the additional advantage that the noise distri-
bution can be calculated exactly within the limitations of
the theory, without having to make ad hoc assumptions
such as the Gaussian approximation, which is clearly not
true in the regions where g —1. Our results imply that
the present theory provides the first systematic method
for analyzing nonsymmetric attractor neural networks
near saturation, which cannot be analyzed within equilib-
rium statistical mechanics due to the absence of detailed
balance.
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APPENDIX A: CALCULATION
OF THE INTENSIVE CONTRIBUTION R
TO THE INTRINSIC NOISE DISTRIBUTION

In this appendix we carry out some of the manipula-
tions necessary to calculate the intensive contribution &
(24) to the intrinsic noise distribution. We first define

=i In [fdze'—(l/Z)DAz—iT-z ] — _lz E (A—l)zeT;}
B v

=pVN 3 S (A 1B 45, m"+0 ‘% ] , (A1)
B v
fdze—(l/z)z-z\rirzzgzg 2
v — J—— —(1/2)z:Az—iY-z BoV
8ap fdze—(l/Z)z-Az—iT-z P In [fdze ] Teu8p
=(A""— 2(/\—1);15?3] [E(A*l)egrg : (A2)
¥n 8p

We now define

r,= D Enzet 3 IL,mY(s%)
vZc

a v>c

b
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where
- 1 .
EL == N [(x4;,+yA;,)8,+ipASst], wv>c, (A3)
g, =[(x4;,+y4,,)8, +ipA,,s7], p>c,v=c . (A4)

Then & (24) becomes

_lxpz 2 E ;HAS (A—l IBAS mp+1 2 E 2 gpAs (A-l llAs gn

B wp<cv,np>c wmpS<xv,p>c

S 3 AL ALe

wmp<xv,n>c

+1 3 (EL(ATHEEE +[—iEl (ATHY YL+ T, m [ —iE5 (AT +15,mP]} . (AS)
u>c

The symmetric and antisymmetric terms decouple. We neglect terms of order 1/N and define auxiliary variables A,
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Ay B 7?’“,, P, and 73,“, such that
L S A5, (ATHITEAS =7‘—2=iTrA, L 3 45 (A_l)"zﬁAsA=a7=iTr7~{,
N HvA>c o = " P2 N N uvA>c * .uV " N
_ 1.
T 3 ALATHLAG =ap= TeP, (A6
uvA>c
where
2
Xzza—‘g’—m AS, AS [1—p(1—g+ng) A, 1 [1—p(1—q) A5, 1Y), (A7)
72=%Tr{ As, AL [1—p(1—g)(1—q+ng) A5, [[1—p(1—g+nq) A}, 17 [1—p(1—g) A3, 17"} . (A8)

We can then simplify the expression for & to

d m,/d m, dr/dt d my/dt dm,/dt

dr/d m,
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FIG. 7. Plots showing the
derivatives dm,/dt, dm,/dt,
dr/dt, dm,/dm,, and dr/dm,
as a function of time measured
in iterations per spin. The lines
show data taken from numerical
simulations while the points are
theoretical data. The system has
40000 spins and embedding ma-
trix (76) with a =1, T=0, and
p =1024 (squares) and p =2048
(triangles).
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—ixpE [ R+ (n — 1 e pe 1 e e @ o
R=ixp&-[R+(n 1M]m+2Nx ERE T4 §T’§+2x F+ixp

L, A

= N a

ars; +— 3 s
a>1

2 a _ _
—92— — Sy P +ipx’m [(n — DA+R][(n — DA +Fm

2
aF Y sisf+ - > s,-“s,-B
a P a#B

2
+ip3xm-[(n —1)A+R][(n —1).)4+7~€]m2s,-‘1—%p4m-[(n —1DA+R[(n —1)A+R]m ‘2 s,“}

—1y2p’m- A3, PAS, m—y’pm- 3 A% A% (A" PAS m+x’pm- A5, [R+(n—1)A]m
B

+ip>xm- AS, AS, |3 sAAT)P+ T sHATHY ] Al m—p’m- AS, AS, 357 3 sPATIPAS m
a,B v.B 14 a,B

2
+1ix’m- AS, A5, m+ipxm- A, A5 m3 sf— %m- AS, ASm Y sPsP—1y’m- A% A% m . (A9)
a a,B

We drop terms of O (1/N) and hence the remaining part of the integral is of the form
$5[25,20}~ fdx a'y eixzs+iyz”e —(1/2)p%¢9

72
X<exp > Eu S sf—ixB—ixp a?s,-l+% S st | —x26—ipx 3, F s
v=c a a>1 a
np*a¥ _ nk*
+%I’22s,"‘s}6+ - > ) (A10)
ap 2 2 (5]
where
9=—ap—2pm- A% A%, A, " [AR+(n —1)AIm—p’m- AS,PAS, m—m- A%, Al m, (A11)
B=p& R+ (n—1)A,Im, (A12)
E=14m-{ AL, +p[Roy+(n — DAL, [ Al +p[ Ry +(n — DA, JJm+ S, (A13)
Fo=m-{ AL +p[R ey +(n — DAL N[ AL+p[R e+ (n — DA J}m (A14)
L2=X>+p’m-{ Af, +p[R., +(n — DA, B{ AL +p[ Ry +(n — DA, J}m . (A15)
Using our definition of A~! we see that
R+(n—1)A=(1—qg+ng) AS[1—p(1—q)AS, ] 'A°, (A16)
so that
m-{ AL, +p[R e, +(n — DA, B AL +p[ Ry +(n — DA, JJm=m- AL [1-p(1—¢) A}, ] > Al m , (A17)

and therefore ['2=A2.

APPENDIX B: AT SURFACE

In this appendix we calculate the derivatives needed to determine the AT surface signaling the instability of the
replica-symmetric solutions. To calculate the derivatives we note that

D(z,q) 3°F(z)
[dz 34, F(z) zgfdzfo(z,q)azgazg. (B1)

Therefore,



S. N. LAUGHTON AND A. C. C. COOLEN 51

2598
3’Q
aqaﬁaq}/ﬁ
o 3 fdzi)(z,q)e<I/Z’PZ'A‘”P‘/W""ASZ[( Az '+ VN (m- AP][( A’z +V'N (m- A*]
- N # aqaﬁ fdzi)(z,q)e(1/2)pz~A’z+p\/1Vm-A‘z
, fdz:D(z,q) — [e(l/Z)pz-ASz+p\/_1\7m-ASz[( Aszy)y+1/N (mAS)y][( ASZS)““"/N(HI'AS)“]}
=P S 92,2
4N v fdz,@(z,q)e(l/2)pz-A’z+pﬁm'aASz
, fdz@(z’q)e(1/2)pz-ASz+p\/Wm-A~‘z[( Asza)v_'_»‘/ﬁ(m_AS)v][( AsZﬁ)V‘i‘\/N(m'As)v]
P fdzz)(z’q)e(1/2)pz'A’z+p\/_IVm-Asz
N fdzZ)(z’q)e(l/Z)pz¢ASz+p1/Fm-A-‘z[( ASZ},)IL""\/N(ID‘AS)”][( ASZS)H"l'\/N(m'AS)#] -
fdz:D(z’q)e(1/2)pz-ASz+px/Fm~Asz (B2)
Using previous notation we write
[ dzD(z,q)e1/Pem ArtpV N Az
K=
&a fdzi)(z q)e(l/z)pz~Asz+px/ﬁm-Asz (B3)
L fdz@(z,q)e(1/2)pz~ASz+p\/Nm~ASzz;éz§ -
8ap™ fdzi)(z q)e(l/Z)pz-A‘erpx/Nm-Asz
vy J 2Dz, qle 2P Mo N Kz gy (B5)
8apy fdzz)(z q)e(l/Z)pz~A"z+p\/ﬁm~A’z ’
I K ) (B6)
Ferre fdz@(z,q)e“mpz'A‘Z+p‘/ﬁm-A’z )
(B2) then becomes
2
w2 {pz S AnaAipA, A%g R
uv aByd
+VN 3 [(m- A5V A5, A543, (28 +g B ) +(m- A%) A5, 45545, (855K +g55)]

aBy

+N 3 (m- A(m- AV A5, A58 %h
af

+ ZB(m-As)”(m~As)"(Af,aA‘yg"‘7+As A5 @R+ ASpAS 8B+ AS5 A5 R)
Q,
+(m- A%)"(m- A%)" 45, 45873

+N323 (m- A*(m- A*)*[(m- ATV (A5,8%+ ASpeh)+(m- A)(A45, g7 + A5:83)]

+N?*(m- A )*(m- AS)*(m- A%)"(m- A*)"

+pA5,85,[ A5, 4525 +VN (m- A A5:23 + VN (m- A*) 45,82 +N(m- A*V(m- A%)"]
+pA5,0p5[ A3, 45,82 +V'N (m- A%)* A5, g7 +V'N (m- A 45,82+ N(m- A*)*(m- A°)"]
+p A58, A5 A58 R +VN (m- A9 4553 +V'N (m- A*F 4585+ N(m- A*)(m- A?)”]
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+pA SaS[A BAM’}’g
+A’vAsV(8a S55+ 80585,

—pY A5, A3 B+ VN (m- A%) 45,82+ VN (m

5 +V'N (m- A% 45,87 +V'N (m- A"V 4585+ N(m- A*)*(m- A*)"]

“A%) 45,85+ N(m- A*)(m- A®)"]

X[ A5, A58 73 +V'N (m- A" 45,87 +V'N (m- A*V 45,83+ N(m- A"V (m- A*W] | . (B7)

We can calculate (114) using

Q — — —1\aB 45
=gk p‘/NEZ(A BAs,m,

g —ghIign —g g e +2g kg ke

3287 +2e4g e +284g R 3 —6ghe 8788 =0,
(B8)

a'Y"‘
3%Q .
—m =ghy—ghgp=(A"1)%,
a
i-——-————a3ﬂ =gHVN — - gl‘+2g =0
aT‘éaTﬁaY" ga gaﬁg'y g gB g By agﬂgy ’
Y]
———awargawarﬁ =ghils —8hpied —8hme ) — 8l R +2
o v d
—gpReh —ghle il +2g flg kg s +2g42
ghyme =ghre T2 +ghlg R +ghlgim .

Since the replicon mode has the property 3¥,6q,5=0 [17], we need only consider terms containing exactly two & func-
tions (in replica space). Therefore the only important terms in the above expression are

2
s s 45 pobsy 8 s 2
B (85 T BasBpy) S l& BEBA,‘“,AWA AS8Pg7 +2p2ﬂ A5 AS AL+ A5, 45,
uv afy a
where §*¥=g B,
Similarly we can show that the important terms in
<<s"'s8exp EpSs LS (A*+28,5)s%P ) >
%P __9 a a#B &l (s (B9)
069,308 0
2059535 s <<exp Epny s+l (7L2+286a3)s°‘s“ > >
a a#pB &l (s
are
(B10)

(aaya,,ﬁaaﬁs,;,)( [y cosh—4(g~p+m>
3
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